GC content shapes mRNA storage and decay in human cells
نویسندگان
چکیده
منابع مشابه
Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage.
The 5'-to-3' mRNA degradation machinery localizes to cytoplasmic processing bodies (P-bodies), which are non-membranous structures found in all eukaryotes. Although P-body function has been intensively studied in yeast, less is known about their role in mammalian cells, such as whether P-body enzymes are actively engaged in mRNA degradation or whether P-bodies serve as mRNA storage depots, part...
متن کاملCytoplasmic foci are sites of mRNA decay in human cells
Understanding gene expression control requires defining the molecular and cellular basis of mRNA turnover. We have previously shown that the human decapping factors hDcp2 and hDcp1a are concentrated in specific cytoplasmic structures. Here, we show that hCcr4, hDcp1b, hLsm, and rck/p54 proteins related to 5'-3' mRNA decay also localize to these structures, whereas DcpS, which is involved in cap...
متن کاملA role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells
The eukaryotic Ccr4/Caf1/Not complex is involved in deadenylation of mRNAs. The Caf1 and Ccr4 subunits both potentially have deadenylating enzyme activity. We investigate here the roles of Ccr4 and Caf1 in deadenylation in two organisms that separated early in eukaryotic evolution: humans and trypanosomes. In Trypanosoma brucei, we found a complex containing CAF1, NOT1, NOT2 and NOT5, DHH1 and ...
متن کاملNonsense-mediated decay of human HEXA mRNA.
Nonsense-mediated mRNA decay (NMD), the loss of mRNAs carrying premature stop codons, is a process by which cells recognize and degrade nonsense mRNAs to prevent possibly toxic effects of truncated peptides. Most mammalian nonsense mRNAs are degraded while associated with the nucleus, but a few are degraded in the cytoplasm; at either site, there is a requirement for translation and for an intr...
متن کاملThe mutation spectrum in genomic late replication domains shapes mammalian GC content.
Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: eLife
سال: 2019
ISSN: 2050-084X
DOI: 10.7554/elife.49708